

Underwriters Laboratories Inc. 1285 Walt Whitman Rd. Melville, NY 11747

<u>www.ul.com/emc</u> (631) 271-6200

Job Number:	1001540401
Project Number:	12ME06094
File Number:	E164178
Revision Date:	2013-01-11
Model:	M87X series

Electromagnetic Compatibility Test Report

For

BITRONICS

Copyright © 2010 Underwriters Laboratories Inc.

Underwriters Laboratories Inc. authorizes the above-named company to reproduce this Report provided it is reproduced in its entirety.

Underwriters Laboratories Inc. 1285 Walt Whitman Rd. Melville, NY 11747 A not-for-profit organization dedicated to public safety and committed to quality service for over 100 years

Tel: (631) 271-6200 Fax: (631)439-6095

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

Test Report Details

Tests Performed By:	Underwriters Laboratories Inc.
	1285 Walt Whitman Rd.
	Melville, NY 11747
Tests Performed For:	BITRONICS
	261 BRODHEAD RD
	BETHLEHEM, PA 18017
Applicant Contact:	ROBERT FISHER
Title:	Design Engineer
Phone:	610-997-5176
Fax:	610-997-5450
E-mail:	robert.fisher@novatechweb.com
Revision Test Report Date:	2013-01-11
	Measurement Transducer and Event Manitor (IED)
Product Type.	
Product Standards	EN61326-1 EN61000-6-4 EN61000-6-2 EN60255-26 EN60255-26
Model Number:	M87X series with new H12 Host module
Sample Serial Number:	895101
EUT Category:	Industrial Control - Heavy Industry, Laboratory Equipment,
	0010 10 10
Testing Start Date:	2012-10-10
Date Testing Complete:	2012-12-07
Overall Results:	Compliant

Underwriters Laboratories Inc. reports apply only to the specific samples tested under stated test conditions. All samples tested were in good operating condition throughout the entire test program. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. Underwriters Laboratories Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from Underwriters Laboratories Inc. issued reports. This report shall not be used to claim, constitute or imply product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the US government.

This report may contain test results that are not covered by the NVLAP or A2LA accreditation. The scope of accreditation is limited to the specific tests that are listed on the NVLAP and/or A2LA websites referenced at the end of this report.

Report Directory

1.0	G E N E R A L - Product Description	5
1.1	Equipment Description	5
1.2	Equipment Marking Plate	6
1.3	Device Configuration During Test	6
Devi 1. 1. 1. 1.	ce Configuration During Test Continued 3.1 Supporting Equipment Used During Test: 3.2 Input/Output Ports: 3.3 EUT Internal Operating Frequencies: 3.4 Power Interface:	7 7 8 9 9
1.4	Block Diagram:	10
1.5	EUT Configurations	12
1.6	EUT Operation Modes	12
2.0	Summary	12
2.1	Deviations from standard test methods	12
2.2	Device Modifications Necessary for Compliance	12
2.3	Reference Standards	12
2.4	Results Summary	13
3.0	Calibration of Equipment Used for Measurement	14
4.0	EMISSIONS TEST RESULTS	14
4.1	Test Conditions and Results – MAINS TERMINAL – CONDUCTED EMISSIONS	15
4.2	Test Conditions and Results – RADIATED EMISSIONS	29
4.3	Test Conditions and Results – LIMITS OF HARMONICS OF CURRENT	42
4.4 FLIC	Test Conditions and Results – LIMITS OF VOLTAGE CHANGES, VOLTAGE FLUCTUATIONS AND KER	42
5.0	IMMUNITY TEST RESULTS	42
5.1 5. 5.	Performance Criteria 1.1 General 1.2 Product Specific Performance Criteria	43 43 44
5.2	Test Conditions and Results – ELECTROSTATIC DISCHARGES (ESD)	45
5.3	Test Conditions and Results –RADIATED IMMUNITY	49
5.4	Test Conditions and Results – ELECTRICAL FAST TRANSIENTS	53
5.5	Test Conditions and Results – SURGE IMMUNITY	60
5.6	Test Conditions and Results – CONDUCTED IMMUNITY	64

Job Nu Model Client	umber: Number: Name:	1001540401 M87X series BITRONICS	File Number:	E164178	Page	4 of 74	
5.7	Test Cond	litions and Results –	POWER-FREQUENCY MA	GNETIC FIELD	S		67
5.8	Test Cond	litions and Results –	VOLTAGE DIPS AND INTE	RRUPTIONS			69
Appendix	ά Α						73
Accrea	ditations and	Authorizations					. 73

Report Revision History

Revision	evision Description		Revision Reviewed By
Date			
None	N/A	N/A	N/A
2013-01-11	Correct typographical errors, correct set up information, add additional set up diagram, identify ESD test location	Joseph Danisi	Mike Antola

1.0 GENERAL - Product Description

1.1 Equipment Description

The M87x Multifunction Recording Transducer and Event Monitor is an electric measurement system for substation applications Its primary role is a substation electrical measurement server for substation LANs and corporate WANs.

EMC type testing is performed on a representative model from the M87x product family. There are various M87x models since the product is modular, offering various chassis and modules. M87x can function as a transducer and/or an event monitor. These transducers are Intelligent Electronic Devices (IEDs), which are multifunctional, intending to address single or dual bus applications, or serve as digital transducers with I/O monitoring. The analog measurements (voltage and current), Digital I/O and Communications availability will depend on the model number and module types. Chassis type and module types can vary. The EMC type testing will be performed using a Model M871 sample with H12 Host module that contains optional Ethernet communications.

The M871 consists of 12 independent isolated analog inputs – 4 AC current, 6 AC voltage and 2 auxiliary voltage inputs, either AC or DC. The modular chassis design allows various options to be selected such as communications output and other options such as Digital I/O that provides status monitoring and control outputs (relay outputs). The C07A5 chassis size allows up to 3 option cPCI expansion bays. The range of cPCI expansion bays may be extended up to 6 in other chassis sizes, which are available as options.

M871 measurement calculations include RMS current, voltage, power, harmonics, energy and others. These measurements may be communicated via the following communication methods: UCA 2.0 protocol using MMS Object Explorer through Ethernet; Masters connected to its communications ports, either serial or Ethernet, using Modbus or DNP3.0 protocols; Nodes on a Modbus Plus network connected through a Modbus Plus module. The M871 can be configured to simultaneously support these multiple protocols.

The communication ports on the Host processor consist of the following: Port P1, an RS232 service port with a DB9 connector using "Zmodem /Display/ Log" protocol. Ports P2-P4 that support serial RS232/RS485 communications using one of the following protocols: "Zmodem /Display/Log" protocol, Modbus, DNP3.0, or IRIG-B (time synchronization protocol via satellite).

Each analog input signal is continuously sampled at 128 (or 256) times per cycle. Non-volatile flash memory is used for periodic data logging and event capturing of waveforms as oscillography files which can be exported as Comtrade files and viewed using SubCycleStuf, Wavewin and other comtrade viewers.

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

1.2 Equipment Marking Plate

1.3 Device Configuration During Test

The Bitronics Ulilities program using the latest Configurator version v3.10 was used to configure the EUT for operation with the various communication ports.

For M871 as the EUT the communication ports were configured as follows: P1 for RS232 service port operation at 9600 baud communication with the test PC; P2 for RS232 at 38.4Kbaud. Ethernet network IP addresses will connect over a 100Mb copper Ethernet connection.

The M871 EUT has been configured for monitoring through a PC laptop computer on the RS232 and ethernet communication links. The communication links were made using the following connection methods: an RS232 serial operation link with the service port P1 connected to PC laptop USB port through an RS232 USB converter. Port P2 configured as RS232 connected to the PC laptop USB Port using an RS232 to USB converter, and the Ethernet connection running at 100Mb. Modbus protocol was used over Ethernet and RS232 links; Zmodem/Display/Log protocol will automatically communicate Zmodem data when queried over the EUT's service port link. The LEDs on the Digital I/O module panel shall be monitored visually during the tests. The digital input status LEDs will be ON (illuminate as green) when the inputs are connected to a 24Vdc source. M871 Relay output LEDs have been configured to be ON (illuminate yellow) when the relays are in the closed state. Relay outputs are Normally Open but must be set to a closed state. The output states are able to be set using the BiView2 software Digital I/O screen. The BiView2 software program v3.03, which has been installed on the desktop of the Test laptop/PC, will be used to monitor the transducer inputs in Modbus during the test. Signal Input voltage readings, Digital I/O states, heartbeat, etc. may be monitored as well.

On M871, the relay outputs are isolated form one another, so the relay outputs were connected in series. Relay outputs 1-4 were hardware configured as closed contacts during the test. This configuration lends itself to monitoring the group for a single relay opening in the series connection of relay contacts, so that if any one relay opens it is detected as a change in output state for the entire group.

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

Device Configuration During Test Continued

The M871 Ethernet port has been configured to operate using Modbus protocol; and communicate while connected with the laptop over a local network interconnection. The Signal Input amplitude can be viewed in the BiView2 v3.03 Instantaneous screen running Modbus over Ethernet; the Digital I/O states can be viewed from the Digital Input/Output screen in BiView using Zmodem over serial connection (P1 if Hyper terminal is not connected, or P2); The BiView2 v3.03 software screen labeled Digital Input/Output will be used to visually monitor the Digital I/O status and toggle outputs in order to verify the relay outputs are operational. Using BiView2 software the output state of the relay contacts will need to be periodically changed to verify operation of the relays.

1.3.1 Supporting Equipment Used During Test:

Use	Product Type	Manufacturer	Model	Comments			
EUT	IED Meter	BITRONICS	M87X	Host module installed in EUT:CPCI-H12M512E1, Host Processor Assy w/256M CF, with Ethernet option 10/100UTP (PHY, internal to CPU chip)			
EUT	IED Meter	BITRONICS	M87X	Host module to install as 2 nd Host module for testing EUT with Ethernet E3 Option: CPCI-H12M512E3, Host ProcessorAssy w/256M CF, with Ethernet option 10/100UTP & 100F (PHY, external to CPU chip, with separate 25MHz crystal)			
AE	Laptop	Lenovo	T60	None			
AE	USB to RS232 DB9 adapter	Keyspan	USA-19HS	Provided by Applicant			
AE	USB to Ethernet adapter	StarTech	USB21000S	Provided by Applicant			
AE	Power supply	Power Designs Inc.	6050A	None			
Note: T EUT - Equip	Note: The Host module with E3 Ethernet option was only tested for Radiated Emissions UT - Equipment Under Test, AE - Auxiliary/Associated Equipment, or SIM - Simulator (Not Subjected to Test)						

Job Number: 1001540401 M87X series Model Number: **BITRONICS Client Name:**

1.3.2 Input/Output Ports:

Port #	Name	Type*	Cable Max. >3m (Y/N)	Cable Shielded (Y/N)	Comments		
0	Enclosure	N/E	—	_	None		
1	Mains	AC	NO	NO	None		
2	S11 (Aux Power)	AC	NO	NO	8 assigned terminals (Bus1 VT & Bus2 VT) and 2 Vaux terminals on terminal block for voltage and 8 terminal studs for current connection (Bus 1 CT).		
3	Ethernet	I/O	YES	NO	RJ45 Copper 10/100 Mbps Option E1 Module H12.		
4	Ethernet	I/O	YES	NO	RJ45 Copper fiber 10 Mbps Option E3 Module H12.		
5	Digital I/O (P30)	I/O	YES	NO	16 position terminal block 8 input channels(inputs 1 thru 4 shared with outputs 1 thru4) Relay Outputs: 4 output channels(shared with inputs 1 thru 4).		
6	Port P1 Serial (RS232)	I/O	YES	YES	RS232/Display/service Port P1 configured for RS232 service port		
7	Port P2 (Terminal)	I/O	YES	YES	RS232/RS485 Port (3 ports, P2- P4, of same design.) configured		
8	S11	I/O	YES	NO	8 terminal studs for current connection (Bus 1 CT).		
Note: AC – AC Power Port DC – DC Power Port N/E – Non-Electrical							

DC = DC Power Port N/E = Non-Electrical = AC Power Port

Signal Input or Output Port (Not Involved in Process Control)
 Telecommunication Ports

AC I/O TP

1.3.3 EUT Internal Operating Frequencies:

Frequency (MHz)	Description			
0.032768	Crystal			
14.318	Crystal			
33.3	PCI Bus			
25	Oscillator			
125 100 MBps (Ethernet)				
200	Memory			
600	Processor			

1.3.4 Power Interface:

Mode # /Rated	Voltage (V)	Current (A)	Power (W)	Frequency (DC/AC-Hz)	Phases (#)	Comments
Rated	69-240Vac	-	-	50/60Hz	Single Phase	None
1	230Vac	-	-	50Hz	Single Phase	None
2	120/230VAC			60/50Hz	Single Phase	Auxiliary power

1.4 Block Diagram:

The diagram below illustrates the configuration of the equipment above.

Underwriters Laboratories Inc. 1285 Walt Whitman Rd. Melville, New York 11747 USA Tel.: 631 271-6200 Fax: 631 439-6095 Rev. No 1.0 EMC Report 2010-87-EM-F0042

Support_Eq_M871Layout_121102.cdr Rev 3 2-Nov-2012, R. Fisher

1.5 EUT Configurations

Mode #	Description
1	The manufacturer BITRONICS configured the equipment under test for normal operation on display reading voltages with serial port also see section 1.3. E1 Module
2	The manufacturer BITRONICS configured the equipment under test for normal operation on display reading voltages with serial port also see section 1.3. E3 Module

1.6 EUT Operation Modes

Mode #	Description
1	Virtual Display reading voltage

2.0 Summary

The tests listed in the Summary of Testing section of this report have been performed and the results recorded by Underwriters Laboratories Inc. in accordance with the procedures stated in each test requirement and specification. The applicant determined the list of tests performed were applicable to the Equipment Under Test. As a result, the subject product has been verified to comply or not comply as noted in the Summary of Testing with each test specification. The test results relate only to the items tested.

2.1 Deviations from standard test methods

Immunity to 1MHz Burst Disturbances: EN60255-22-1 and IEC61000-4-16 on Input/output ports was not requested by applicant

2.2 Device Modifications Necessary for Compliance

None

2.3 Reference Standards

Standard Number	Standard Name	Standard Date
EN61000-6-4	Electromagnetic compatibility (EMC) - Part 6-4: Generic standards - Emission standard for industrial environments A1: 2011	2010
EN61000-6-2	Electromagnetic compatibility (EMC) Part 6-2: Generic standards – Immunity for industrial environments - IEC 61000-6-2: 2005	2005
EN61326-1	Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 1: General requirements	2006
EN60255-25	Electrical relays – Part 25: Electromagnetic emission tests for measuring relays and protection equipment	2001
EN60255-26	Measuring relays and protection equipment - Part 26: Electromagnetic compatibility requirements	2009

2.4 Results Summary

This product is considered Class A

Requirement – Test	Result (Compliant / Non-Compliant)*
Conducted Emissions - Mains	Compliant
Conducted Emissions - Telecommuncations Ports	Compliant
Conducted Immunity	Compliant
EFT	Compliant
ESD	Compliant
Flicker	Compliant
Harmonics	Compliant
Power Frequency Magnetic Fields	Compliant
Radiated Emissions	Compliant
Radiated Immunity	Compliant
Surge Immunity	Compliant
Voltage Dips and Interruptions	Compliant

Note: The immunity requirements for equipment intended for use in industrial control per table 2 in accordance with IEC 61326-1 are met.

Test Engineer:

Reviewer:

Joe Danisi (Ext.23055) WiSE Project Lead International EMC Services Conformity Assessment Services-

Victed 1

Mike Antola(Ext.23053) WiSE Project Lead International EMC Services Conformity Assessment Services

Any information and documentation involving UL Mark services are provided on behalf of Underwriters Laboratories Inc. (UL) or any authorized licensee of UL.

3.0 Calibration of Equipment Used for Measurement

All test equipment and test accessories are calibrated on a regular basis. The maximum time between calibrations is one year or the manufacturers' recommendation, whichever is less.

All test equipment calibrations are traceable to the National Institute of Standards and Technology (NIST); therefore, all test data recorded in this report is traceable to NIST.

4.0 EMISSIONS TEST RESULTS

The emissions tests were performed according to the following regulations:

------ International -----

EMC Directive: EMC - 2004/108/EC (OJ L 390 of 2004-12-31)

Unless specified otherwise in the individual Methods, the tests shall be conducted under the following ambient conditions. Confirmation of these conditions shall be verified at the time the test is conducted.

Ambient	225+25	Relative	45 + 15	Barometric	050 ± 150
Temperature, ℃	22.3 ± 2.3	Humidity, %	45 ± 15	Pressure, mBar	930 ± 130

Measurement Uncertainty

Test	Uncertainty
Conducted Emissions	± 3.3, K=2
Radiated Emissions 30-200 MHz, Horizontal	± 3.1, K=2
Radiated Emissions 30-200MHz, Vertical	± 3.2, K=2
Radiated Emissions, 200-1000MHz, Horizontal	± 3.3, K=2
Radiated Emissions, 200-1000MHz, Vertical	± 4.0, K=2

Sample Calculations

Radiated Field Strength and Conducted Emissions data contained within this report is calculated on the following basis:

Field Strength (dBuV/m) = Meter Reading (dBuV) + AF (dB/m) - Gain (dB) + Cable Loss (dB) Conducted Voltage (dBuV) = Meter Reading (dBuV) + Cable Loss (dB) + LISN IL (dB) Conducted Current (dBuA) = Meter Reading (dBuV) + Cable Loss (dB) - Transducer Factor (dBohms)

4.1 Test Conditions and Results – MAINS TERMINAL – CONDUCTED EMISSIONS

Test Description	Measu througl were m	Aeasurements were made on a ground plane. All power was connected to the system hrough Artificial Mains Network (AMN). Conducted voltage measurements on mains lines vere made at the output of the AMN.					
Basic Stand	ard		C	ISPR11/EN6	1000-6-4		
UL LPG				80-EM-S0	0026		
			Frequency range on each side of line		Measurement Point		
Fully configured sample scanned over the following frequency range			150kHz to 30MHz		Mains		
			Limits - Class A				
_			Limit (dBµV)			
Frequency (MHz)	Qua	asi-Peak		Average		
0.15-0.	.5	79		66			
0.5-30)		73	60			
Supplement	ary info	rmation: None		•			

Table 1 Conducted Emissions EUT Configuration Settings

Power Interface Model	EUT Configurations Model	EUT Operation Model
1 & 2	1	1
Supplementary information: None		

Table 2 Conducted Emissions Test Equipment

Description	Manufacturer	Model	Identifier	Cal Date	Due Date
Conducted Emissions – GP 1					
EMI Receiver	Rohde & Schwarz	ESC17	75141	2012-01-06	2013-01-31
LISN	EMCO	3825/2R	ME5-790	N/A	N/A
LISN	Solar	9252-50-R-24-BNC	ME5A-636	2012-02-01	2013-02-28
Switch Driver	HP	11713A	44397	N/A	N/A
RF Switch Box	UL	4	44404	N/A	N/A
Measurement Software	UL	Version 9.5	44736	N/A	N/A
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	43734	2012-03-13	2014-03-13
Multimeter	Fluke	83III	ME5B-305	2012-02-01	2013-02-28

Figure 1 Test Setup for Conducted Emissions

Mains

File: CDE_150K-30MHz_Class A_EN61000-6-4_main_230Vac_50Hz.DAT

Table 3 Conducted Emissions Data Points

Manufacturer: Bitronics Device: Event Monitor Model: M87X Series Job Number: 1001540401 230V/50Hz Tested By: MM

Line - L1 .15 - 30MHz

			20		EN61000-			
		LISN 5A636 Line	dB		6-4		EN61000-	
Meter		1 Cab L1 SW TL	Pad		Quasi-		6-4	
Reading	Detector	[dB]	[dB]	[dB(uVolts)]	peak	Margin	Average	Margin
53.52	РК	10.1	20	83.62	79	4.62	66	17.62
17.69	Av	10.1	20	47.79	79	-31.21	66	-18.21
49.08	РК	10.1	20	79.18	79	0.18	66	13.18
22.93	Av	10.1	20	53.03	79	-25.97	66	-12.97
44.88	РК	10.1	20	74.98	79	-4.02	66	8.98
20.62	Av	10.1	20	50.72	79	-28.28	66	-15.28
41.7	РК	10.1	20	71.8	79	-7.2	66	5.8
18.5	Av	10.1	20	48.6	79	-30.4	66	-17.4
39.06	РК	10	20	69.06	79	-9.94	66	3.06
16.55	Av	10	20	46.55	79	-32.45	66	-19.45
37.14	РК	10	20	67.14	79	-11.86	66	1.14
16.65	Av	10	20	46.65	79	-32.35	66	-19.35
34.74	РК	10	20	64.74	79	-14.26	66	-1.26
16.61	Av	10	20	46.61	79	-32.39	66	-19.39
	Meter Reading 53.52 17.69 49.08 22.93 44.88 20.62 41.7 18.5 39.06 16.55 37.14 16.65 34.74 16.61	MeterReadingDetector53.52PK17.69Av49.08PK22.93Av44.88PK20.62Av41.7PK18.5Av39.06PK16.55Av37.14PK16.65Av34.74PK16.61Av	MeterLISN 5A636 Line 1 Cab L1 SW TLReadingDetector[dB]53.52PK10.117.69Av10.149.08PK10.122.93Av10.144.88PK10.120.62Av10.141.7PK10.118.5Av10.139.06PK10.116.55Av10.137.14PK1016.65Av1034.74PK1016.61Av10	20MeterLISN 5A636 LinedBMeter1 Cab L1 SW TLPadReadingDetector[dB][dB]53.52PK10.12017.69Av10.12049.08PK10.12022.93Av10.12044.88PK10.12020.62Av10.12041.7PK10.12018.5Av10.12039.06PK10.12016.55Av102037.14PK102016.65Av102034.74PK102016.61Av1020	20 LISN 5A636 Line dB Meter 1 Cab L1 SW TL Pad Reading Detector [dB] [dB] [dB] 53.52 PK 10.1 20 83.62 17.69 Av 10.1 20 47.79 49.08 PK 10.1 20 79.18 22.93 Av 10.1 20 53.03 44.88 PK 10.1 20 53.03 44.88 PK 10.1 20 74.98 20.62 Av 10.1 20 74.98 20.62 Av 10.1 20 50.72 41.7 PK 10.1 20 69.06 39.06 PK 10.1 20 46.55 37.14 PK 100 20 67.14 16.65 Av 100 20 64.74 16.61 Av 100 20 64.61	20 EN61000- Meter 1 Cab L1 SW TL 6A Quasi- Reading Detector [dB] [dB] Quasi- 53.52 PK 10.1 20 83.62 79 17.69 Av 10.1 20 47.79 79 49.08 PK 10.1 20 79.18 79 49.08 PK 10.1 20 79.18 79 49.08 PK 10.1 20 79.18 79 44.88 PK 10.1 20 74.98 79 20.62 Av 10.1 20 74.98 79 41.7 PK 10.1 20 74.98 79 18.5 Av 10.1 20 74.98 79 18.5 Av 10.1 20 69.06 79 39.06 PK 10 20 69.05 79 37.14 PK 10 20 64.55 </td <td>ISN 5A636 Line20EN61000-Meter1 Cab L1 SW TLPadCuasi-ReadingDetector[dB][dB][dB]peakMargin53.52PK10.12083.62794.6217.69Av10.12047.7979631.2149.08PK10.112079.18790.1822.93Av10.112079.1879625.9744.88PK10.112074.9879625.9720.62Av10.112071.8179628.2841.7PK10.112071.879630.439.06PK10.112048.6679630.439.06PK10.112069.0679630.416.55Av10.112066.1679632.4537.14PK10.102067.147961.816.65Av10.12064.6579632.3534.74PK10.12064.747961.816.65Av102064.7479632.3534.74PK10.12064.7479632.3534.74PK10.12064.7479632.3534.74PK10.12064.7479632.3534.74PK10.12064.7479632.3534.74PK10.1<</td> <td>20EN61000-LISN 5A63 6 Line$dB$$6-4$EN61000-Meter1 Cab L1 SW TLPadQuasi-$6-4$ReadingDetector[dB][dB][dB]UVolts]peakMarginAverage53.52PK$101$20$83.62$$79$$4.62$$66$$17.69Av1011$20$47.79$$79$$31.21$$66$$49.08PK1011$20$79.18$$79$$0.18$$66$$22.93Av1011$20$73.03$$79$$25.97$$66$$24.48PK1011$20$74.02$$74.02$$66$$20.62Av1011$20$74.98$$79.9$$61.62$$44.88PK1011$20$74.98$$79.9$$62.59$$66$$44.88PK1011$20$74.98$$79.9$$62.59$$66$$44.88PK1011$20$50.72$$79.9$$25.97$$66$$14.17PK1011$20$61.61$$79$$62.54$$66$$39.06PK1011$20$69.61$$79$$9.24.54$$66$$39.16PK1010$20$66.74$$79$$61.46$$66.61$$39.16PK1010$20$66.74$$79$$61.46$$66.61$$39.16PK1010$20$66.74$$79$$61.46$$66.61$$37.14$PK<t< td=""></t<></td>	ISN 5A636 Line20EN61000-Meter1 Cab L1 SW TLPadCuasi-ReadingDetector[dB][dB][dB]peakMargin53.52PK10.12083.62794.6217.69Av10.12047.7979631.2149.08PK10.112079.18790.1822.93Av10.112079.1879625.9744.88PK10.112074.9879625.9720.62Av10.112071.8179628.2841.7PK10.112071.879630.439.06PK10.112048.6679630.439.06PK10.112069.0679630.416.55Av10.112066.1679632.4537.14PK10.102067.147961.816.65Av10.12064.6579632.3534.74PK10.12064.747961.816.65Av102064.7479632.3534.74PK10.12064.7479632.3534.74PK10.12064.7479632.3534.74PK10.12064.7479632.3534.74PK10.12064.7479632.3534.74PK10.1<	20EN61000-LISN 5A63 6 Line dB $6-4$ EN61000-Meter1 Cab L1 SW TLPadQuasi- $6-4$ ReadingDetector[dB][dB][dB]UVolts]peakMarginAverage53.52PK 101 20 83.62 79 4.62 66 17.69 Av 1011 20 47.79 79 31.21 66 49.08 PK 1011 20 79.18 79 0.18 66 22.93 Av 1011 20 73.03 79 25.97 66 24.48 PK 1011 20 74.02 74.02 66 20.62 Av 1011 20 74.98 79.9 61.62 44.88 PK 1011 20 74.98 79.9 62.59 66 44.88 PK 1011 20 74.98 79.9 62.59 66 44.88 PK 1011 20 50.72 79.9 25.97 66 14.17 PK 1011 20 61.61 79 62.54 66 39.06 PK 1011 20 69.61 79 $9.24.54$ 66 39.16 PK 1010 20 66.74 79 61.46 66.61 39.16 PK 1010 20 66.74 79 61.46 66.61 39.16 PK 1010 20 66.74 79 61.46 66.61 37.14 PK <t< td=""></t<>

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear Average detector

LgAv - Log Average detector

Av - Average detector

CAV - CISPR Average detector

Manufacturer: Bitronics Device: Event Monitor Model: M87X Series Job Number: 1001540401 230V/50Hz Tested By: MM

Neutral .15 - 30MHz

				20		EN61000-			
			LISN 5A636 Line	dB		6-4		EN61000-	
Test	Meter		2 CabL4Neut SW	Pad		Quasi-		6-4	
Frequency	Reading	Detector	[dB]	[dB]	[dB(uVolts)]	peak	Margin	Average	Margin
0.15	49.89	РК	10.1	20	79.99	79	0.99	66	13.99
0.15	15.31	Av	10.1	20	45.41	79	-33.59	66	-20.59
0.1815	46.5	РК	10.1	20	76.6	79	-2.4	66	10.6
0.1815	22.33	Av	10.1	20	52.43	79	-26.57	66	-13.57
0.2175	41.03	РК	10.1	20	71.13	79	-7.87	66	5.13
0.2175	18.04	Av	10.1	20	48.14	79	-30.86	66	-17.86
0.249	38.5	РК	10.1	20	68.6	79	-10.4	66	2.6
0.249	17.07	Av	10.1	20	47.17	79	-31.83	66	-18.83
0.285	37.66	РК	10	20	67.66	79	-11.34	66	1.66
0.285	17.78	Av	10	20	47.78	79	-31.22	66	-18.22
0.3255	33.82	РК	10	20	63.82	79	-15.18	66	-2.18
0.3255	16.89	Av	10	20	46.89	79	-32.11	66	-19.11
0.393	31.26	РК	10.1	20	61.36	79	-17.64	66	-4.64
0.393	20.32	Av	10.1	20	50.42	79	-28.58	66	-15.58

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear Average detector

LgAv - Log Average detector

Av - Average detector

CAV - CISPR Average detector

Manufacturer: Bitronics Device: Event Monitor Model: M87X Series Job Number:1001540401 230V/50Hz Tested By: MM

Line - L1 .15 - 30MHz

			20		EN61000-			
		LISN 5A636 Line	dB		6-4		EN61000-	
Meter		1 Cab L1 SW TL	Pad		Quasi-		6-4	
Reading	Detector	[dB]	[dB]	[dB(uVolts)]	peak	Margin	Average	Margin
42.42	QP	10.1	20	72.52	79	-6.48	66	6.52
42.62	QP	10.1	20	72.72	79	-6.28	66	6.72
40.67	QP	10.1	20	70.77	79	-8.23	66	4.77
35.93	QP	10.1	20	66.03	79	-12.97	66	0.03
32.48	QP	10.1	20	62.58	79	-16.42	66	-3.42
29.54	QP	10	20	59.54	79	-19.46	66	-6.46
26.95	QP	10	20	56.95	79	-22.05	66	-9.05
25.72	QP	10	20	55.72	79	-23.28	66	-10.28
	Meter Reading 42.42 42.62 40.67 35.93 32.48 29.54 26.95 25.72	Meter Reading Detector 42.42 QP 42.62 QP 40.67 QP 35.93 QP 32.48 QP 29.54 QP 26.95 QP 25.72 QP	Meter LISN 5A636 Line 1 Cab L1 SW TL Reading Detector [dB] 42.42 QP 10.1 42.62 QP 10.1 40.67 QP 10.1 35.93 QP 10.1 32.48 QP 10.1 29.54 QP 10.1 26.95 QP 10.1 25.72 QP 10	LISN 5A636 Line20 CHMeterLISN 5A636 LinePadMeter1 Cab L1 SW TLPadReadingDetector[dB][dB]42.42QP10.12042.62QP10.12040.67QP10.12035.93QP10.12032.48QP10.12029.54QP10.12026.95QP10.12025.72QP10.120	LISN 5A636 Line20 dBMeter1 Cab L1 SW TA PadPadReadingDetector[dB][dB]42.42QP10.12042.62QP10.12040.67QP10.12035.93QP10.12032.48QP10.12029.54QP10.12026.95QP10.12025.72QP10.120	ISN 5AG36 Line20ENG1000-MeterLISN 5AG36 LinedB6-4Meter1 Cab L1 SW TLPadQuasi-ReadingDetector(dB)(dB)peak42.42QP10.12072.5242.62QP10.12072.5240.67QP10.12070.7735.93QP10.12066.0332.48QP10.12062.5829.54QP10.12059.5426.95QP10.12055.7225.72QP102055.72	ISN 5A636 Line20EN61000MeterLISN 5A636 LinedB6-4Meter1 Cab L1 SW TLPadQuasi-ReadingDetector(dB)(dB)10042.42QP10.12072.527942.62QP10.12072.727940.67QP10.12070.777935.93QP10.12066.037932.48QP10.12066.037932.49QP10.12062.587929.54QP10.12059.547926.95QP10.12055.727925.72QP10.12055.7279	IndexInterpretent

Neutral .15 - 30MHz

				20		EN61000-			
			LISN 5A636 Line	dB		6-4		EN61000-	
Test	Meter		2 CabL4Neut SW	Pad		Quasi-		6-4	
Frequency	Reading	Detector	[dB]	[dB]	[dB(uVolts)]	peak	Margin	Average	Margin
0.1518	42.46	QP	10.1	20	72.56	79	-6.44	66	6.56
0.15	42.94	QP	10.1	20	73.04	79	-5.96	66	7.04
0.1797	40.5	QP	10.1	20	70.6	79	-8.4	66	4.6
0.2175	35.58	QP	10.1	20	65.68	79	-13.32	66	-0.32
0.2481	32.27	QP	10.1	20	62.37	79	-16.63	66	-3.63
0.2823	29.34	QP	10	20	59.34	79	-19.66	66	-6.66
0.321	27.63	QP	10	20	57.63	79	-21.37	66	-8.37
0.3912	23.44	QP	10.1	20	53.54	79	-25.46	66	-12.46

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear Average detector

LgAv - Log Average detector

Av - Average detector

CAV - CISPR Average detector

Figure 3 Conducted Emissions Graph

File: CDE_150K-30MHz_Class A_EN61000-6-4_Aux_230Vac_50Hz.DAT

Table 4 Conducted Emissions Data Points

Manufacturer: Bitronics Device: Event Monitor Model:M87X Series Job Number:1001540401 Aux - 230V/50Hz Tested By: MM

Line - L1 .15 - 30MHz

Test	Meter		LISN 5A636 Line 1		EN61000-6- 4 Quasi-		EN61000- 6-4	
Frequency	Reading	Detector	Cab L1 SW TL [dB]	[dB(uVolts)]	peak	Margin	Average	Margin
0.1635	49.94	РК	10.1	60.04	79	-18.96	66	-5.96
0.1635	14.35	Av	10.1	24.45	79	-54.55	66	-41.55
0.276	52.5	РК	10	62.5	79	-16.5	66	-3.5
0.276	14.21	Av	10	24.21	79	-54.79	66	-41.79
0.384	33.59	РК	10.1	43.69	79	-35.31	66	-22.31
0.384	2.73	Av	10.1	12.83	79	-66.17	66	-53.17
0.825	22.4	РК	10.1	32.5	73	-40.5	60	-27.5
0.825	17.21	Av	10.1	27.31	73	-45.69	60	-32.69
1.5045	28.81	РК	10.1	38.91	73	-34.09	60	-21.09
1.5045	24.37	Av	10.1	34.47	73	-38.53	60	-25.53
7.404	31.44	РК	10.4	41.84	73	-31.16	60	-18.16
7.404	19.5	Av	10.4	29.9	73	-43.1	60	-30.1
13.4205	33.8	РК	10.9	44.7	73	-28.3	60	-15.3
13.4205	32.34	Av	10.9	43.24	73	-29.76	60	-16.76

PK - Peak detector
QP - Quasi-Peak detector
LnAv - Linear Average detector
LgAv - Log Average detector
Av - Average detector
CAV - CISPR Average detector

RMS - RMS detection

CRMS - CISPR RMS detection

Manufacturer: Bitronics Device: Event Monitor Model:M87X Series Job Number:1001540401 Aux - 230V/50Hz Tested By: MM

Neutral .15 - 30MHz

					EN61000-6-		EN61000-	
Test	Meter		LISN 5A636 Line 2		4 Quasi-		6-4	
Frequency	Reading	Detector	CabL4Neut SW [dB]	[dB(uVolts)]	peak	Margin	Average	Margin
0.15	50.85	РК	10.1	60.95	79	-18.05	66	-5.05
0.15	15.93	Av	10.1	26.03	79	-52.97	66	-39.97
0.2715	53.04	РК	10	63.04	79	-15.96	66	-2.96
0.2715	13.65	Av	10	23.65	79	-55.35	66	-42.35
0.321	45.63	РК	10	55.63	79	-23.37	66	-10.37
0.321	18.34	Av	10	28.34	79	-50.66	66	-37.66
0.537	25.62	РК	10.1	35.72	73	-37.28	60	-24.28
0.537	13.93	Av	10.1	24.03	73	-48.97	60	-35.97
1.5045	27.37	РК	10.1	37.47	73	-35.53	60	-22.53
1.5045	23.77	Av	10.1	33.87	73	-39.13	60	-26.13
7.314	34.03	РК	10.4	44.43	73	-28.57	60	-15.57
7.314	25.73	Av	10.4	36.13	73	-36.87	60	-23.87
11.769	32.1	РК	10.8	42.9	73	-30.1	60	-17.1
11.769	19.65	Av	10.8	30.45	73	-42.55	60	-29.55

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear Average detector

LgAv - Log Average detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

CRMS - CISPR RMS detection

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

4.2 Test Conditions and Results – COMMON MODE (ASYMMETRIC MODE) DISTURBANCE AT TELECOMMUNICATION PORTS

Method	Measurements were made on a ground plane. All power was connected to the system through Artificial Mains Network (AMN). All tested telecommunications lines were connected to an Impedance Stabilization Network (ISN) and conducted voltage measurements on telecommunications lines were made at the output of the ISN. Where an ISN was not appropriate or available measurements were made using a Capacitive Voltage Probe and Current probe.					
Basic Standa	rd			CIS	SPR22/EN61000-6-4	
UL LPG					80-EM-S0026	
			Frequency range on each side of line			Measurement Point
Fully configured sample scanned over the following frequency range			150kHz to 30MHz			Telecom
				Limits - Class A		
		Voltag	je Limits (dBμV)		Current Limits (dBµA)	
Frequency (N	1HZ)	Quasi-Peak		Average	Quasi-Peak	Average
0.15 to 0.50 97 to 87			84 to 74	53 to 43	40 to 30	
0.50 to 30 87		74		43	30	
Supplementary information: Ethernet cable						

Table 5 Conducted Emissions - Telecommunications Ports EUT Configuration Settings

Power Interface Mode	EUT Configurations Mode	EUT Operation Mode				
1	1	1				
Supplementary information: Ethernet cable						

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

Table 6 Conducted Emissions - Telecommunications Ports Test Equipment

Tes					
Description	Manufacturer	Model	Identifier	Cal Date	Due Date
Conducted Emissions – GP 1	•				
	Rohde &			21012-01-06	2013-06-31
EMI Receiver	Schwarz	ESC17	75141		
LISN	EMCO	3825/2R	ME5-790	N/A	N/A
		9252-50-R-24-		2012-02-01	2013-02-28
LISN	Solar	BNC	ME5A-636		
Switch Driver	HP	11713A	44397	N/A	N/A
RF Switch Box	UL	4	44404	N/A	N/A
Measurement Software	UL	Version 9.5	44736	N/A	N/A
Temp/Humidity/Pressure				2012-03-13	2013-03-13
Meter	Cole Parmer	99760-00	43734		
Tes					
Description	Manufacturer	Model	Identifier		
Conducted Emissions – Misc.					
ISN	Teseq	ISN T8	65703	2102-02-04	2013-02-28
Multimeter	Fluke	83111	ME5B-305	2012-02-01	2013-02-28

File Number: E164178

Figure 4 Test Setup of Telecommunications Port Conducted Emissions

UL EMC Test System 17 Oct 2012 11:28:48 125 Conducted Telecom Ports Manufacturer:Bitronics 114 Device:Event Monitor Model:M87X Series Job Number:1001540401 - Enthenet Cable Tested By:MM 103 92 ISPR22 Class Voltage QΡk Ĥ dB[uVolts] Range 81 Voltage Class Ι F λvq 70 59 48 37 26 Madal Did Did. Manuali, Alia . 15 10 30 Frequency [MHz] RBWEHz] VBWEHz] Sweep .1s/4.5kHz Range [MHz] Label Det 1:.15-30 PK/A Range 1 9k n/a File: CDE_150K-30MHz_Class A_CISPR22_Enthenet Cable.DAT

Figure 5 Telecommunications Port Conducted Emissions Graph

BITRONICS

Job Number:

Client Name:

Model Number:

Table 7 Telecommunications Port Conducted Emissions Data Points

Manufacturer: Bitronics Device: Event Monitor Model:M87X Series Job Number:1001540401 - Ethernet Cable Tested By: MM

Range 1 .15 - 30MHz

		ISN T800	Cable L2		CISPR22		CISPR22	
		48209 use	Probes Isn		Class A		Class A	
Meter		Cable 2	Due 2013		Voltage		Voltage	
Reading	Detector	[dB]	[dB]	dB[uVolts]	QPk	Margin	Avg	Margin
29.07	РК	11	10.3	50.37	87	-36.63	74	-23.63
25.83	Av	11	10.3	47.13	87	-39.87	74	-26.87
22.85	РК	10.9	10.4	44.15	87	-42.85	74	-29.85
18.68	Av	10.9	10.4	39.98	87	-47.02	74	-34.02
30.05	РК	10.8	10.4	51.25	87	-35.75	74	-22.75
21.76	Av	10.8	10.4	42.96	87	-44.04	74	-31.04
29.81	РК	10.7	10.4	50.91	87	-36.09	74	-23.09
26.49	Av	10.7	10.4	47.59	87	-39.41	74	-26.41
30.72	РК	10.6	10.4	51.72	87	-35.28	74	-22.28
26.56	Av	10.6	10.4	47.56	87	-39.44	74	-26.44
34.48	РК	11.2	10.4	56.08	87	-30.92	74	-17.92
30.02	Av	11.2	10.4	51.62	87	-35.38	74	-22.38
	Meter Reading 29.07 25.83 22.85 18.68 30.05 21.76 29.81 26.49 30.72 26.56 34.48 30.02	MeterReadingDetector29.07PK25.83Av22.85PK18.68Av30.05PK21.76Av29.81PK26.49Av30.72PK26.56Av34.48PK30.02Av	ISN T800 48209 use Cable 2 Meter Cable 2 Reading Detector [dB] 29.07 PK 11 25.83 Av 11 25.83 Av 10.9 18.68 Av 10.9 30.05 PK 10.8 21.76 Av 10.7 26.49 Av 10.7 30.72 PK 10.6 26.56 Av 10.6 34.48 PK 10.6 34.48 PK 11.2	ISN T800 Cable L2 Meter Cable 2 Probes Isn Reading Detector [dB] [dB] 29.07 PK 11 10.3 25.83 Av 11 10.3 22.85 PK 10.9 10.4 18.68 Av 10.9 10.4 30.05 PK 10.8 10.4 29.81 PK 10.9 10.4 30.05 PK 10.9 10.4 21.76 Av 10.8 10.4 29.81 PK 10.7 10.4 20.55 Av 10.7 10.4 26.49 Av 10.7 10.4 30.72 PK 10.6 10.4 34.48 PK 11.2 10.4 30.02 Av 11.2 10.4	ISN T800 Cable L2 48209 use Probes Isn Meter Cable 2 Due 2013 Reading Detector [dB] dB[uVolts] 29.07 PK 11 10.3 50.37 25.83 Av 111 10.3 47.13 22.85 PK 10.9 10.4 39.98 30.05 PK 10.8 10.4 39.98 30.05 PK 10.8 10.4 42.96 29.81 PK 10.8 10.4 42.96 20.55 Av 10.8 10.4 42.96 21.76 Av 10.7 10.4 47.59 29.81 PK 10.7 10.4 47.59 26.49 Av 10.6 10.4 47.56 30.72 PK 10.6 10.4 47.56 34.48 PK 11.2 10.4 56.08 30.02 Av 11.2 10.4 51.62	ISN T800Cable L2CISPR22A8209 useProbes IsnClass AMeterCable 2Due 2013VoltageReadingDetector[dB]dB[uVolts]QPk29.07PK11110.350.378725.83Av11110.347.138722.85PK10.910.444.158718.68Av10.910.439.988730.05PK10.810.451.258725.84Av10.710.450.918730.05PK10.710.450.918726.49Av10.610.447.598730.72PK10.610.447.568730.73PK10.610.456.088730.74PK10.610.447.568730.75Av10.610.456.088730.72Av10.610.456.088730.73Av10.610.456.088730.74Av10.610.456.088730.75Av10.610.456.088730.76Av11.210.456.088730.77Av11.210.456.088730.78Av11.210.456.088730.79Av11.210.451.628730.79Av11.210.451	ISN T800Cable L2CISPR22Meter48209 useProbes IsnClass AMeterCable 2Due 2013VoltageReadingDetector[dB]dB[uVolts]QPkMargin29.07PK1110.350.3787-36.6325.83Av11110.347.1387-39.8722.85PK10.910.444.1587-42.8518.68Av10.910.439.9887-47.0230.05PK10.810.451.2587-35.7521.76Av10.710.442.9687-36.0926.49PK10.710.447.5987-35.7530.72PK10.710.450.9187-35.4830.72PK10.710.447.5987-35.4830.72PK10.610.447.5987-35.4830.72PK10.610.451.7287-35.4830.72PK10.610.447.5687-35.4830.72PK10.610.456.0887-30.4130.72Av10.610.456.0887-30.4130.72Av11.210.456.0887-30.4130.72Av11.210.456.0887-30.4130.72Av11.210.456.0887-30.41 <tr <td="">30.72<t< td=""><td>ISN T800 48209 use ReadingCable 2 48209 use (Cable 2Cable 3 Probes IsnClass AClass AClass AMeter ReadingDetector(dBl 2dB[uV0ts)QPkMarginAvg29.07PK1110.350.3787-36.637425.83Av11110.347.1387-39.877425.84Av10.910.444.1587-39.877418.68Av10.910.439.9887-47.027430.05PK10.810.451.2587-35.757421.76Av10.810.450.9187-36.097420.84PK10.710.450.9187-36.097420.75PK10.610.450.9187-36.097420.76Av10.710.450.9187-36.097420.75PK10.610.450.9187-36.917420.76Av10.610.451.7287-35.287420.75PK10.610.451.7287-35.417420.76Av10.610.451.7287-35.417420.76Av10.610.451.6287-30.927420.76Av11.210.451.6287-35.387420.76Av11.210.451.6287</td></t<></tr>	ISN T800 48209 use ReadingCable 2 48209 use (Cable 2Cable 3 Probes IsnClass AClass AClass AMeter ReadingDetector(dBl 2dB[uV0ts)QPkMarginAvg29.07PK1110.350.3787-36.637425.83Av11110.347.1387-39.877425.84Av10.910.444.1587-39.877418.68Av10.910.439.9887-47.027430.05PK10.810.451.2587-35.757421.76Av10.810.450.9187-36.097420.84PK10.710.450.9187-36.097420.75PK10.610.450.9187-36.097420.76Av10.710.450.9187-36.097420.75PK10.610.450.9187-36.917420.76Av10.610.451.7287-35.287420.75PK10.610.451.7287-35.417420.76Av10.610.451.7287-35.417420.76Av10.610.451.6287-30.927420.76Av11.210.451.6287-35.387420.76Av11.210.451.6287
ISN T800 48209 use ReadingCable 2 48209 use (Cable 2Cable 3 Probes IsnClass AClass AClass AMeter ReadingDetector(dBl 2dB[uV0ts)QPkMarginAvg29.07PK1110.350.3787-36.637425.83Av11110.347.1387-39.877425.84Av10.910.444.1587-39.877418.68Av10.910.439.9887-47.027430.05PK10.810.451.2587-35.757421.76Av10.810.450.9187-36.097420.84PK10.710.450.9187-36.097420.75PK10.610.450.9187-36.097420.76Av10.710.450.9187-36.097420.75PK10.610.450.9187-36.917420.76Av10.610.451.7287-35.287420.75PK10.610.451.7287-35.417420.76Av10.610.451.7287-35.417420.76Av10.610.451.6287-30.927420.76Av11.210.451.6287-35.387420.76Av11.210.451.6287								

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear Average detector

LgAv - Log Average detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

CRMS - CISPR RMS detection

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

4.2 Test Conditions and Results – RADIATED EMISSIONS

Test Description	Measurements were made in a 10-meter semi-anechoic chamber that complies to CISPR 16/ANSI C63.4. Preliminary (peak) measurements were performed at an antenna to EUT separation distance of 10-meter. The EUT was rotated 360° about its azimuth with the receive antenna located at various heights in both horizontal and vertical polarities. Final measurements (quasi-peak or average as noted) were then performed by rotating the EUT 360° and adjusting the receive antenna height from 1 to 4-meters. All frequencies were investigated in both horizontal and vertical antenna polarity, where applicable.					
Basic Standa	ard	CISPF	11/EN61000-6-4			
UL LPG		80-EM-S0029				
		Frequency range	Measurement Point			
Fully configue over the follo	red sample scanned wing frequency range	30MHz – 1GHz	(10 meter measurement distance)			
		Limits - Class A				
_		Limit (dBµV/m)				
Frequency (MHz)		Quasi-Peak	Average			
	30-230	40	NA			
2	230-1000	47	NA			
Supplementary information: None						

Table 8 Radiated Emissions EUT Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #		
1	1 & 2	1		
Supplementary information: None				

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

Description	Manufacturer	Model	Identifier	Cal Date	Due Date
30-1000MHz		·			
EMI Receiver	Rohde & Schwarz	ESIB40	34968	2012-01-30	2013-01-30
Log-P Antenna	Schaffner	UPA6109	44068	2012-04-10	2013-04-10
Bicon Antenna	Schaffner	VBA6106	43441	2011-10-11	2012-10-31
		AM-1523-		N/A	N/A
Bias Tee	Miteq	7687	44392		
		AM-1523-		N/A	N/A
Bias Tee	Miteq	7687	44393		
		AM-3A-		N/A	N/A
Preamp	Miteq	000110-7687	44391		
		AM-3A-		N/A	N/A
Preamp	Miteq	000110-7687	44394		
Switch Driver	HP	11713A	ME7A-627	N/A	N/A
System Controller	Sunol Sciences	SC99V	44396	N/A	N/A
Camera Controller	Panasonic	WV-CU254	44395	N/A	N/A
RF Switch Box	UL	1	44398	N/A	N/A
Measurement Software	UL	Version 9.5	44740	N/A	N/A
Temp/Humidity/Pressure	emp/Humidity/Pressure			2010-12-07	2012-12-07
Meter	Cole Parmer	99760-00	4268		
Multimeter	Fluke	83III	ME5B-305	2012-02-01	2013-02-28

Table 9 Radiated Emissions Test Equipment

Figure 6 Test setup for Radiated Emissions

Radiated Emission 30 to 1000MHz Front View E1 Host Module

Radiated Emission 30 to 1000MHz Rear View E1 Host Module

Figure 7 Test setup for Radiated Emissions

Radiated Emission 30 to 1000MHz Front View E3 Host Module

Radiated Emission 30 to 1000MHz Rear View E3 Host Module

File Number: E164178

Job Number:

Model Number:

1001540401

M87X series

Figure 9 Radiated Emissions Graph

File: RDE_30_1000MHz_Class A_CISPR11_230Vac_50Hz.DAT

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

Table 10 Radiated Emissions Data Points

Manufacturer: Bitronics Device: Measurement Meter (IED) Model:M87X Series Job#:1001540401 230Vac, 50Hz Tested by :JD

Vertical 30 - 200MHz

Test	Meter		AF- 43441	GL- 10M A	dB(uVolts/	CISPR11/ EN55011 Class A		Azimuth	Height	
Frequency	Reading	Detector	[dB]	[dB]	meter)	Grp 1	Margin	[Degs]	[cm]	Polarity
133.3353	46.77	QP	14	-32.6	28.17	40	-11.83	14	124	Vert
149.9651	49.14	QP	14.8	-32.5	31.44	40	-8.56	305	101	Vert

Horizontal 200 - 1000MHz

Test Frequency	Meter Reading	Detector	AF- 44068 [dB]	GL- 10M B [dB]	dB(uVolts/me ter)	CISPR11/EN550 11 Class A Grp 1	Margin	Azimuth [Degs]	Height [cm]	Polarity
274.9743	64.21	QP	12.7	-31.2	45.71	47	-1.29	318	316	Horz
200.0156	50.26	QP	11.3	-31.7	29.86	40	-10.14	54	284	Horz
299.989	54.99	QP	13.1	-30.8	37.29	47	-9.71	146	366	Horz
324.9754	58.74	QP	13.7	-30.5	41.94	47	-5.06	189	298	Horz
333.3152	60.02	QP	14	-30.5	43.52	47	-3.48	55	226	Horz
349.981	55.77	QP	14.9	-30.4	40.27	47	-6.73	109	247	Horz

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear Average detector

LgAv - Log Average detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

CRMS - CISPR RMS detection

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

Manufacturer: Bitronics

Device: Measurement Meter (IED) Model:M87X Series Job#:1001540401 230Vac, 50Hz

Tested by :JD

		AF-	GL-		CISPR11/EN55				
Meter		4406	10M B	dB(uVolts/	011 Class A		Azimuth	Height	
Reading	Detector	8 [dB]	[dB]	meter)	Grp 1	Margin	[Degs]	[cm]	Polarity
56.02	QP	15.7	-29.9	41.82	47	-5.18	334	260	Horz
54.03	QP	16.8	-29.5	41.33	47	-5.67	169	225	Horz
54.48	QP	16.8	-29.5	41.78	47	-5.22	350	212	Horz
56.53	QP	17.5	-29.5	44.53	47	-2.47	255	189	Horz
55.77	QP	18.2	-29.4	44.57	47	-2.43	49	196	Horz
52.69	QP	19.1	-28.8	42.99	47	-4.01	196	166	Horz
50.97	QP	19.6	-28.6	41.97	47	-5.03	46	213	Horz
51.07	QP	20.1	-28.7	42.47	47	-4.53	27	185	Horz
50.65	QP	19.8	-28.8	41.65	47	-5.35	132	156	Horz
49.3	QP	20.7	-28.7	41.3	47	-5.7	253	126	Horz
51.16	QP	20.3	-28.9	42.56	47	-4.44	255	350	Horz
51.17	QP	21.4	-29	43.57	47	-3.43	340	124	Horz
	Meter Reading 56.02 54.03 54.48 56.53 55.77 52.69 50.97 51.07 50.65 49.3 51.16 51.17	MeterReadingDetector56.02QP54.03QP54.48QP56.53QP55.77QP52.69QP50.97QP51.07QP50.65QP51.07QP51.16QP51.17QP	AF- Meter 4406 Reading Detector 8 [dB] 56.02 QP 15.7 54.03 QP 16.8 54.48 QP 16.8 55.57 QP 17.5 55.77 QP 18.2 52.69 QP 19.1 50.97 QP 19.1 50.97 QP 19.1 50.65 QP 19.1 50.65 QP 19.1 50.44 QP 19.1 50.57 QP 20.1 51.07 QP 20.1 50.65 QP 20.7 51.16 QP 20.3 51.17 QP 21.4	AF- GL- Meter 4406 10M B Reading Detector 8 [dB] [dB] 56.02 QP 15.7 -29.9 54.03 QP 16.8 -29.5 54.48 QP 16.8 -29.5 55.77 QP 17.5 -29.4 55.77 QP 18.2 -29.4 52.69 QP 19.1 -28.8 50.97 QP 19.1 -28.4 50.65 QP 19.6 -28.7 50.65 QP 19.6 -28.7 50.65 QP 19.6 -28.7 50.65 QP 19.8 -28.8 50.65 QP 19.8 -28.8 49.3 QP 20.1 -28.7 51.16 QP 20.7 -28.7 51.16 QP 20.3 -28.9 51.16 QP 20.3 -28.9 51.17 QP 20.3<	AF- GL- Meter 4406 10M B dB(uVolts/ meter) Reading Detector 8 [dB] [dB] meter) 56.02 QP 15.7 -29.9 41.82 54.03 QP 16.8 -29.5 41.33 54.48 QP 16.8 -29.5 41.53 55.57 QP 17.5 -29.5 44.53 55.77 QP 18.2 -29.4 44.57 55.75 QP 19.1 -28.8 42.99 50.97 QP 19.6 -28.6 41.97 51.07 QP 19.6 -28.7 42.47 55.57 QP 19.6 -28.6 41.97 51.07 QP 20.1 -28.7 42.47 55.55 QP 19.8 -28.8 41.65 49.3 QP 20.7 -28.7 41.35 49.3 QP 20.3 -28.7 41.35 51.16	AF- GL- CISPR11/EN55 Meter 4406 10M B dB(uVolts/ meter) 011 Class A Grp 1 56.02 QP 15.7 -29.9 41.82 47 54.03 QP 16.8 -29.5 41.33 47 54.48 QP 16.8 -29.5 41.78 47 56.53 QP 17.5 -29.5 44.53 47 56.53 QP 18.2 -29.5 44.53 47 55.77 QP 18.2 -29.4 44.57 47 55.77 QP 18.2 -29.4 44.57 47 50.97 QP 19.1 -28.8 42.99 47 50.97 QP 19.6 -28.6 41.97 47 50.07 QP 19.8 -28.8 41.65 47 50.65 QP 19.8 -28.7 41.3 47 49.3 QP 20.7 -28.7 41.3 47	AF-GL-CLSPR11/EN55Meter440610M BdB(uVolts/ meter)011 Class AReadingDetector8 [dB][dB]meter)Grp 1Margin56.02QP15.7-29.941.8247-5.1854.03QP16.8-29.541.3347-5.2256.53QP16.8-29.541.7347-5.2256.53QP18.2-29.544.5347-2.4355.77QP18.2-29.444.5747-2.4355.75QP19.1-28.842.9947-5.0350.65QP19.6-28.641.9747-5.3350.65QP19.8-28.841.6547-5.3350.65QP19.8-28.841.6547-5.3560.53QP19.8-28.841.6547-5.3550.65QP19.8-28.841.6547-5.3560.55QP20.1-28.741.3547-5.3550.65QP19.8-28.841.6547-5.3561.65QP20.1-28.741.3547-5.3563.65QP20.1-28.741.3547-5.3564.51QP20.3-28.741.3547-5.4365.65QP20.3-28.741.3547-5.7564.65QP20.3-28.741.35 <td>AF-GL-CLISPR11/EN55Meter440610M BdB(uVolts/ meter)011 Class AAzimuth ImageReadingDetector8 [dB][dB]dB(uGrp 1Margin[Degs]56.02QP15.7-29.941.8247-5.1833454.03QP16.8-29.541.3347-5.6716954.48QP16.8-29.541.7847-5.2235056.53QP17.5-29.544.5347-2.4725555.77QP18.2-29.444.5747-2.434952.69QP19.1-28.842.99474.0119650.97QP19.6-28.641.974.7-5.034.651.07QP19.8-28.841.65475.032.555.77QP19.8-28.742.474.52.550.97QP19.6-28.641.974.75.034.650.97QP19.6-28.641.974.75.313250.65QP19.8-28.742.474.75.3513249.3QP20.7-28.741.3475.3513251.65QP20.8-28.942.56474.4425551.17QP21.4-2943.574.75.43340</td> <td>AF-GL-CLSPR11/EN55Meter440610M BdB(uVolts/ meter)011 Class AAzimuth (Degs)Heigh (Degs)ReadingDetector8 [dB][dB]meter)Grp 1Margin[Degs][cm]56.02QP15.7-29.941.8247-5.1833426054.03QP16.8-29.541.3347-5.6716922554.48QP16.8-29.541.7847-5.2235021256.53QP17.5-29.544.53477-2.4725518955.77QP18.2-29.444.57477-2.434919652.69QP19.1-28.842.99477-4.0119616650.97QP19.6-28.641.97-4.74-5.034621351.07QP19.6-28.641.97-4.0119616650.97QP19.6-28.641.97-4.0119616650.97QP19.8-28.742.474775.0313215650.65QP19.8-28.741.354775.3513215650.65QP19.8-28.741.354775.3513215649.3QP20.7-28.741.354775.3513215651.16QP20.3-28.942.564775.43<</td>	AF-GL-CLISPR11/EN55Meter440610M BdB(uVolts/ meter)011 Class AAzimuth ImageReadingDetector8 [dB][dB]dB(uGrp 1Margin[Degs]56.02QP15.7-29.941.8247-5.1833454.03QP16.8-29.541.3347-5.6716954.48QP16.8-29.541.7847-5.2235056.53QP17.5-29.544.5347-2.4725555.77QP18.2-29.444.5747-2.434952.69QP19.1-28.842.99474.0119650.97QP19.6-28.641.974.7-5.034.651.07QP19.8-28.841.65475.032.555.77QP19.8-28.742.474.52.550.97QP19.6-28.641.974.75.034.650.97QP19.6-28.641.974.75.313250.65QP19.8-28.742.474.75.3513249.3QP20.7-28.741.3475.3513251.65QP20.8-28.942.56474.4425551.17QP21.4-2943.574.75.43340	AF-GL-CLSPR11/EN55Meter440610M BdB(uVolts/ meter)011 Class AAzimuth (Degs)Heigh (Degs)ReadingDetector8 [dB][dB]meter)Grp 1Margin[Degs][cm]56.02QP15.7-29.941.8247-5.1833426054.03QP16.8-29.541.3347-5.6716922554.48QP16.8-29.541.7847-5.2235021256.53QP17.5-29.544.53477-2.4725518955.77QP18.2-29.444.57477-2.434919652.69QP19.1-28.842.99477-4.0119616650.97QP19.6-28.641.97-4.74-5.034621351.07QP19.6-28.641.97-4.0119616650.97QP19.6-28.641.97-4.0119616650.97QP19.8-28.742.474775.0313215650.65QP19.8-28.741.354775.3513215650.65QP19.8-28.741.354775.3513215649.3QP20.7-28.741.354775.3513215651.16QP20.3-28.942.564775.43<

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear Average detector

LgAv - Log Average detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

CRMS - CISPR RMS detection
Manufacturer: Bitronics Device: Measurement Meter (IED) Model:M87X Series Job#:1001540401 230Vac, 50Hz Tested by :JD

Vertical 200 - 1000MHz

			AF-	GL-						
Test	Meter		44068	10M B	dB(uVolts/	CISPR11/EN55011		Azimuth	Height	
Frequency	Reading	Detector	[dB]	[dB]	meter)	Class A Grp 1	Margin	[Degs]	[cm]	Polarity
224.9653	52.79	QP	10.9	-31.5	32.19	40	-7.81	343	115	Vert
224.9936	53.01	QP	10.9	-31.5	32.41	40	-7.59	343	115	Vert
274.9934	60.94	QP	12.7	-31.2	42.44	47	-4.56	191	102	Vert
299.982	60.93	QP	13.1	-30.8	43.23	47	-3.77	282	105	Vert
333.3212	53.87	QP	14	-30.5	37.37	47	-9.63	61	110	Vert
333.3008	53.68	QP	14	-30.5	37.18	47	-9.82	61	110	Vert
349.9898	56.43	QP	14.9	-30.4	40.93	47	-6.07	78	104	Vert
399.9908	51.21	QP	15.7	-29.9	37.01	47	-9.99	188	108	Vert
474.9752	54.04	QP	17	-29.4	41.64	47	-5.36	72	397	Vert
499.9876	47.58	QP	17.5	-29.5	35.58	47	-11.42	47	100	Vert
524.9752	50.06	QP	18.2	-29.4	38.86	47	-8.14	356	108	Vert
574.9721	55.24	QP	19.1	-28.8	45.54	47	-1.46	43	327	Vert

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear Average detector

LgAv - Log Average detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

CRMS - CISPR RMS detection

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

Manufacturer: Bitronics Device: Measurement Meter (IED) Model:M87X Series Job#:1001540401 230Vac, 50Hz Tested by :JD

Vertical 200 - 1000MHz

			AF-			CISPR11/EN550				
Test	Meter		4406	GL-10M	dB(uVolts/	11 Class A		Azimuth	Height	
Frequency	Reading	Detector	8 [dB]	B [dB]	meter)	Grp 1	Margin	[Degs]	[cm]	Polarity
599.9946	52.45	QP	19.6	-28.6	43.45	47	-3.55	35	258	Vert
624.995	53.16	QP	20.1	-28.7	44.56	47	-2.44	30	297	Vert
650	48.4	QP	19.8	-28.8	39.4	47	-7.6	357	349	Vert
699.9719	53.65	QP	20.7	-28.7	45.65	47	-1.35	24	272	Vert
724.9699	51.65	QP	20.3	-28.9	43.05	47	-3.95	27	220	Vert
774.985	52.14	QP	21.4	-29	44.54	47	-2.46	353	254	Vert

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear Average detector

LgAv - Log Average detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

CRMS - CISPR RMS detection

Figure 10 Radiated Emissions Graph

File: RDE_30_1000MHz_Class A_CISPR11_230Vac_50Hz E3 Card.DAT

Table 11 Radiated Emissions Data Points

Manufacturer: Bitronics Device: Measurement Meter (IED) Model:M87X Series E3 Card Job#:1001540401 230Vac, 50Hz Tested by: JD

Horizontal 30 - 200MHz

			AF-	GL-						
Test	Meter		43441	10M A	dB(uVolts/	CISPR11/EN5501		Azimuth	Height	
Frequency	Reading	Detector	[dB]	[dB]	meter)	1 Class A Grp 1	Margin	[Degs]	[cm]	Polarity
174.9962	42.69	QP	15.3	-32.3	25.69	40	-14.31	104	400	Horz
166.6647	54.35	QP	15	-32.3	37.05	40	-2.95	310	369	Horz

Vertical 30 - 200MHz

			AF-	GL-						
Test	Meter		43441	10M A	dB(uVolts/m	CISPR11/EN5501		Azimuth	Height	
Frequency	Reading	Detector	[dB]	[dB]	eter)	1 Class A Grp 1	Margin	[Degs]	[cm]	Polarity
125.0052	56.08	QP	13.4	-32.6	36.88	40	-3.12	20	140	Vert
166.6792	54.89	QP	15	-32.3	37.59	40	-2.41	341	103	Vert
174.9898	48.25	QP	15.3	-32.3	31.25	40	-8.75	247	209	Vert

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear Average detector

LgAv - Log Average detector

Av - Average detector

CAV - CISPR Average

detector

RMS - RMS detection

CRMS - CISPR RMS detection

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

Manufacturer: Bitronics Device: Measurement Meter (IED) Model:M87X Series E3 Card Job#:1001540401 230Vac, 50Hz Tested by: JD

Horizontal 200 - 1000MHz

Test Frequency	Meter Reading	Detector	AF- 44068 [dB]	GL- 10M B [dB]	dB(uVolts/ meter)	CISPR11/EN550 11 Class A Grp 1	Margin	Azimuth [Degs]	Height [cm]	Polarity
224.9974	55.54	QP	10.9	-31.5	34.94	40	-5.06	19	356	Horz
300.0108	63.28	QP	13.1	-30.8	45.58	47	-1.42	314	305	Horz
425	51.35	QP	16.1	-29.8	37.65	47	-9.35	330	212	Horz
725	50.32	QP	20.3	-28.9	41.72	47	-5.28	52	110	Horz
775	50.03	QP	21.4	-29	42.43	47	-4.57	316	130	Horz

Vertical 200 - 1000MHz

			AF-	GL-						
Test	Meter		44068	10M B	dB(uVolts/me	CISPR11/EN550		Azimuth	Height	
Frequency	Reading	Detector	[dB]	[dB]	ter)	11 Class A Grp 1	Margin	[Degs]	[cm]	Polarity
200.0101	57.23	QP	11.3	-31.7	36.83	40	-3.17	48	101	Vert
274.9995	58.3	QP	12.7	-31.2	39.8	47	-7.2	104	145	Vert
299.998	59.74	QP	13.1	-30.8	42.04	47	-4.96	301	100	Vert

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear Average detector

LgAv - Log Average detector

Av - Average detector

CAV - CISPR Average

detector

RMS - RMS detection

CRMS - CISPR RMS detection

4.3 Test Conditions and Results – LIMITS OF HARMONICS OF CURRENT

Not applicable for a Class A type of device

4.4 Test Conditions and Results – LIMITS OF VOLTAGE CHANGES, VOLTAGE FLUCTUATIONS AND FLICKER

Not applicable for a Class A type of device

5.0 IMMUNITY TEST RESULTS

The immunity tests were performed according to following regulations:

------ International ------

EMC	EMC - 2004/108/EC (OJ L 390 of 2004-12-31)
Directive:	

In accordance with:

Basic Standard	Title
IEC/EN61000-4-2	Electromagnetic Compatibility (EMC) - Part 4.2: Testing and Measurement
IEC/EN61000-4-3	Electromagnetic compatibility (EMC) Part 4-3: Testing and measurement techniques
120/21101000 4 0	Radiated, radio-frequency, electromagnetic field immunity test
IEC/EN61000-4-4	Electromagnetic compatibility (EMC) Part 4-4: Testing and measurement techniques
	- Electrical fast transient/burst immunity test
IEC/EN61000-4-5	Electromagnetic Compatibility (EMC) - Part 4-5: Testing and Measurement
	Techniques - Surge Immunity Test
	Electromagnetic Compatibility (EMC) - Part 4-6: Testing and Measurement
IEC/EN61000-4-6	Techniques - Immunity to Conducted Disturbances, Induced by Radio-Frequency
	Fields
IEC/EN61000-4-8	Electromagnetic Compatibility (EMC) - Part 4-8: Testing and Measurement
	Techniques - Power Frequency Magnetic Field Immunity Test
	Electromagnetic Compatibility (EMC) - Part 4-11: Testing and Measurement
IEC/EN61000-4-11	Techniques - Voltage Dips, Short Interruptions and Voltage Variations Immunity
	Tests

Note: IEC versions are the latest versions unless otherwise stated in the product standard or noted above.

Unless specified otherwise in the individual Methods, the tests shall be conducted under the following ambient conditions. Confirmation of these conditions shall be verified at the time the test is conducted.

Ambient	225,25	Relative	15 . 15	Barometric	050 + 150
Temperature, °C	22.5 ± 2.5	Humidity, %	45 ± 15	Pressure, mBar	950 ± 150

5.1 Performance Criteria

5.1.1 General

Performance Criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance Criterion B

After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance Criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Electrical Equipment for Measurement, Control and Laboratory Use

Performance criterion A

During testing, normal performance within the specification limits.

Performance criterion B

During testing, temporary degradation, or loss of function or performance which is self-recovering.

Performance criterion C

During testing, temporary degradation, or loss of function or performance, which requires operator intervention or system reset occurs.

5.1.2 Product Specific Performance Criteria

The Digital I/O states and Signal Inputs are monitored and communicated to the PC laptop, which is running BiView2 software. The virtual display in Biview2 v3.03 is configured to monitor the measurements of the voltage inputs (or current inputs) over serial port P2 with the Zmodem/Display protocol. The M871 Ethernet port has been configured to operate using Modbus protocol; and communicate while connected with the laptop over a local network interconnection. The Signal Input amplitude can be viewed in the BiView2 v3.03 Instantaneous screen running Modbus over Ethernet; the Digital I/O states can be viewed from the Digital Input/Output screen in BiView using Zmodem over serial connection (P1 if Hyperterminal is not connected, or P2); The BiView2 v3.03 software screen labeled Digital Input/Output will be used to visually monitor the Digital I/O status and toggle outputs in order to verify the relay outputs are operational. Using BiView2 software the output state of the relay contacts will need to be periodically changed to verify operation of the relays. Refer to the section, Setup Instructions from BiView2 v3.03 Software for the details on monitoring Digital I/O; For changing the digital output states from BiView2 click on the output point to change the position of the output relay contact; the relay output contact is closed (on) when the LED is Yellow; the output contact is open (off) when the LED is not lit.

5.2 Test Conditions and Results – ELECTROSTATIC DISCHARGES (ESD)

Method N si di di a V di	Measurements were made on a ground plane that extends 0.5-meter minimum beyond all sides of the system under test and the minimum distance between the equipment under test and any laboratory walls or any other metallic surfaces shall be at least 1-meter. Air discharges were applied to non-metallic parts of the system. Contact discharges were applied to all accessible metallic parts. Discharges were also applied to the Horizontal and Vertical Coupling Planes, where applicable. Each discharge was applied at a rate of one (1) discharge per second.									
Basic Standard					IEC/EN 61000)-4-2				
UL LPG					87-EM-S002	25				
				Measurement Point						
Fully configured the levels show	d sam 'n bel	nple subjected low.	l to	Product Enclosure						
		٦	est L	evels		Performance Criteria				
		Discharge	Level	(kV)	Number of discharges per					
Discharge typ		Positive	Ne	gative	location (each polanty)					
Air – Direct		2, 4, 8	2,	4, 8	10	В				
Contact – Dire	ect	2, 4, 6	2,	4, 6	10	В				
Contact – Indire	ect	2, 4, 6	2,	4, 6	10	В				
Supplementary information: None										

Table 12 ESD EUT Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #
1	1	1
Supplementary information: None.		

Table 13 ESD Test Equipment

Test Equipment Used					
Description	Manufacturer	Model	Identifier		
ESD - GP1					
ESD Gun	EMC-Partner	ESD3000/DM1/RM32	55571		
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	43735		
Multimeter	Fluke	87V	64386		

File Number: E164178

Figure 11 Test Setup for ESD

Figure 12 ESD Verification Waveforms

Positive 6000V Amplitude and Rise Time

Negative 6000V Amplitude and Rise Time

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

TEST POINT		Positive Polarity			Negative Polarity		
		4kV	6kV	2kV	4kV	6kV	
C1- Top Rear Side	2	2	2	2	2	2	
C2 - Left Side Rear	2	2	2	2	2	2	
C3- Right Side Rear	2	2	2	2	2	2	
C4- Serial Port	2	2	2	2	2	2	
C5- Front Side Middle	2	2	2	2	2	2	
C6 - Front Left Screw	2	2	2	2	2	2	
C7 - Top Screw in P30 Column	2	2	2	2	2	2	
VCP - Four Sides	2	2	2	2	2	2	
HCP - Four Sides	2	2	2	2	2	2	

Results Descriptions:

 X - Not Performed nor required.

 1 - Compliant - No perceived discharge, no observed response from EUT.

 2 - Compliant - Discharge observed, no observed response from EUT.

Table 4B Results for Electrostatic Discharges – Air Discharges

		Positive Polarity			Negative Polarity		
TEST POINT	2kV	4kV	8kV	2kV	4kV	8kV	
A1- Main A/C	1	1	2	1	1	2	
A2- Digital Input	1	1	1	1	1	1	
A3- Digital Input	1	1	1	1	1	1	
A4 –Ethernet	1	1	1	1	1	1	
A5- Current Inputs	1	1	2	1	1	2	
A6- Voltage Inputs	1	1	1	1	1	1	

Results Descriptions:

X - Not Performed nor required.
1 – Compliant - No perceived discharge, no observed response from EUT.
2 – Compliant - Discharge observed, no observed response from EUT.

Job Number:	1001540401	File Number:	E164178	
Model Number:	M87X series			
Client Name:	BITRONICS			

Figure 13 Test Locations

5.3 Test Conditions and Results – RADIATED IMMUNITY

Test Description	Measurements were made in a chamber and the indicated field strength was pre-calibrated prior to placement of the system under test. Tests were performed in both the horizontal and vertical polarities, where applicable.						
Basic Standa	rd			IEC/EN 61000-4	4-3		
UL LPG				87-EM-S0027	7		
		Ν	leasurement Point - I	Enclosure			
	Applied Field Performance Criteria				Performance Criteria		
Frequency (M	MHz)	Strength (V/m)	Modulation	Dwell Time			
80 - 1000)	10	80% 1kHz AM	2.8 sec	А		
1400-270	0	10	80% 1kHz AM	2.8 sec	А		
2000-270	0	1	80% 1kHz AM	2.8 sec	А		
900 / 180	0	10	80% AM (1kHz) 60 sec A				
Supplementary information: None							

Table 15 - Radiated Immunity EUT Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #
1	1	1
Supplementary information: None		

Table 16 - Radiated Immunity Test Equipment

Test Equipment Used				
Description	Manufacturer	Model	Identifier	
3-meter Chamber		·	•	
80MHz – 1000MHz				
Signal Generator	Rohde & Schwarz	SMT 03	ME5A-285	
Power Meter	Rohde & Schwarz	NRP2	74190	
Power Meter Sensor	Rohde & Schwarz	NRP-Z91	74193	
Power Meter Sensor	Rohde & Schwarz	NRP-Z91	74194	
Isotropic Probe	ETS Lindgren	HI-6053	55719	
RF Amplifier 80MHz - 1GHz	Amplifier Research	500W100A	ME7A-798	
Log Periodic Antenna 80MHz				
- 6GHz	Amplifier Research	AT6080	51266	
Directional Coupler	Conn. Microwave	440917	ME7A-489	
Camera Controller	EMC Automation	VCC-01	44553	
Turntable Controller	Sunol Sciences	SC98V	ME7A-624	

Test Equipment Used					
Description	Manufacturer	Model	Identifier		
Mast Controller	EMCO	1050 Controller	44552		
Switch Driver	HP	11713A	44402		
Measurement Software	UL	Version 9.3	44737		
Temp/Humidity/Pressure					
Meter	Cole Parmer	99760-00	43735		
Multimeter	Fluke	87V	64386		
1GHz – 2.7GHz					
Signal Generator	Rohde & Schwarz	SMT 03	ME5A-285		
Power Meter	Rohde & Schwarz	NRP2	74190		
Power Meter Sensor	Rohde & Schwarz	NRP-Z91	74193		
Power Meter Sensor	Rohde & Schwarz	NRP-Z91	74194		
Isotropic Probe	ETS Lindgren	HI-6053	55719		
RF Amplifier Rack 800MHz –					
10.6GHz	Amplifier Research	SP1022	51202		
Double Ridge Guide Antenna	EMCO	3115			
Directional Coupler	Conn. Microwave	440918	ME7A-490		
Camera Controller	EMC Automation	VCC-01	44553		
Turntable Controller	Sunol Sciences	SC98V	ME7A-624		
Mast Controller	EMCO	1050 Controller	44552		
Switch Driver	HP	11713A	44402		
Measurement Software	UL	Version 9.3	44737		
Temp/Humidity/Pressure					
Meter	Cole Parmer	99760-00	43735		
Multimeter	Fluke	87V	64386		

Figure 14 - Test Setup for Radiated Immunity

Above 1 GHz

Table 17-Description of Product Performance – Configuration

			Results	
EUT Side	Polarity	80MHz – 1GHz 2 2 2 2 2 2 2 2 2 2 2 2 2	1GHz – 2.7GHz	900MHz / 800MHz
Front	Horizontal	2	1	1/1
FIOIL	Vertical	2	1	1/1
Loft	Horizontal	2	1	1/1
Leit	Vertical	2	1	1/1
Diabt	Horizontal	2	1	1/1
Right	Vertical 2	2	1	1/1
Pook	Horizontal	2	1	1/1
Dack	Vertical	2	1	1/1
Tan	Horizontal	Х	Х	Х
Төр	Vertical	Х	Х	Х
Pottom	Horizontal	Х	Х	Х
DUILUITI	HorizontalXVerticalXHorizontalXVerticalX	Х	Х	

Results Descriptions:

X –Not performed nor required.

1 – Compliant - No observed response from EUT.

2- – Compliant - No observed response from EUT. Change in Voltage and amps, but less than the +/-0.1% tolerance allowed.

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

5.4 Test Conditions and Results – ELECTRICAL FAST TRANSIENTS

Test Description	Measurements were made on a ground plane that extends 1-meter minimum beyond all sides of the system under test. Mains power tests were conducted with the product connected to a Coupling/Decoupling Network (CDN). I/O lines were tested in a Capacitive Coupling Clamp. One of each unique interface was tested for a period of one (1) minute per polarity.							
Basic Standa	rd			IEC/EN 6100	0-4-4			
UL LPG	LPG			87-EM-S0028				
Applicati	on Point	Applied (k\	l Level /)	Repetition Frequency (kHz)	Performance Criteria			
Input AC P	ower Ports	2		5	В			
Input AUX F	Input AUX Power Ports 4			5	В			
Input / Ou	Itput ports	4		5	В			
Signal	Ports	2		5	В			
Telecommuni	ications Ports	2	5 B					
Supplementary information: None								

Table 18 EFT EUT Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #
1 & 2	1	1
Supplementary information: None		

Table 19A EFT Test Equipment

Test Equipment Used								
Description	Manufacturer	Model	Identifier					
Electrical Fast Transients – GP1								
Main Generator	Teseq	NSG 3060	62919					
EFT Module	Teseq	FTM 3425	64367					
Main Coupler	Teseq	CDN 3063-C32	62920					
EFT Capacitive Clamp	Keytek	CCL-4/S	ME7A-441					
		Win 3000						
Measurement Software	Teseq	Version 1.0.0	64371					
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	43734					

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

Table 19B EFT Test Equipment

Test Equipment Used								
Description	Manufacturer	Model	Identifier					
Electrical Fast Transients – GP3								
Main Generator	Teseq	NSG 3040	62386					
EFT Module	Teseq	FTM 3425	62384					
EFT Capacitive Clamp	Teseq	CDN 8015	62918					
		Win 3000						
Measurement Software	Teseq	Version 1.1.0	64369					
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	43735					
Multimeter	Fluke	87V	64386					

ent marne:	BURUNICS						
- 45 A. EFT. M	oveferm Verifientien						
e 15A: EFI: W	aveform verification						
Ground Plane 1	[<mark>ŭ]</mark>		Tek Stop	[ð]		
Ŭ				Ũ			
		Ch1 Max 2.037 V				· · · ·	Ch1 Br 15.00
		Ch1 Rise 5.441ns					Ch1 Fi 5.000k
		Chili Width				•	
		46.46ns					
		1		· · · · · · · · · · · · · · · · · · ·			

Ch1 500mV Ω

File Number:

E164178

Page

M4.00ms A Ch1 J 820mV

36.60 %

55 of 74

8 Nov 2012 09:17:48

1001540401

Job Number:

Ch1 500mV Ω

8 Nov 2012 09:19:09

M40.0ns A Ch1 J 820mV

11 23.00 %

Impulse Duration (Period)

3 Dec 2012 09:10:24

Impulse Duration (Period)

10.00 %

Page 57 of 74

Job Number:1001540401Model Number:M87X seriesClient Name:BITRONICS

Figure 16A Test Setup for EFT

AUX Inputs

I/O Lines

Table 20 Results for Electrical Fast Transients

	Burst Potential, kV							
Mains Mode of Application Mains		Pos	itive		Negative			
	0.5	1.0	2.0	4.0	0.5	1.0	2.0	4.0
Line 1, Line 2 & Line PE with respect to RGP	х	х	1	Х	Х	Х	1	Х
PE with respect to RGP	Х	Х	1	Х	Х	Х	1	Х

			Bu	urst Pot	ential,	kV		
Mode of Application Aux Power		Pos	itive		Negative			
	0.5	1.0	2.0	4.0	0.5	1.0	2.0	4.0
Line 1, Line 2, Line 3 & Line PE with respect to RGP	х	х	х	1	Х	Х	Х	1
PE with respect to RGP	Х	Х	Х	Х	Х	Х	Х	Х

		Burst Potential, kV								
I/O Mode of Application		Positive				Negative				
	0.25	0.5	1.0	2.0	4.0	0.25	0.5	1.0	2.0	4.0
I/O Lines – Ethernet	х	Х	х	1	Х	х	Х	Х	1	Х
I/O Lines – Serial P1	х	Х	х	1	Х	х	Х	Х	1	Х
I/O Lines – Serial P2	Х	Х	х	1	Х	Х	Х	Х	1	Х
I/O Lines – Voltage Inputs	Х	Х	х	Х	1	Х	Х	Х	Х	1
I/O Lines – Current Inputs	Х	Х	Х	Х	1	х	Х	Х	Х	1
I/O Line Digital I/O	х	Х	х	1	х	х	Х	Х	1	Х
I/O Line Digital I/O	х	Х	х	1	х	х	Х	Х	1	Х

Artificial Hand Used

Results Descriptions:

X - Not Performed nor required.

1 – Compliant - No observed response from EUT.

Job Number: Model Number: Client Name:	1001540401 M87X series BITRONICS	File Number:	E164178	Page	60 of 74

5.5 Test Conditions and Results – SURGE IMMUNITY

Test Description	Mains power tests were conducted with the product connected to a Coupling/Decoupling Network (CDN). The test voltage was increased from the lowest indicated level up to the maximum level. Five (5) positive surges and five (5) negative surges were applied at each of phases of the a.c. waveform: 0°, 90°, 180° and 270°. Each surge was applied 60 seconds after the previous surge. Signal and Telecommunications ports were subject to five (5) positive and five (negative) surges applied through the appropriate Coupling/Decoupling Network (CDN).					
Basic Standard – Mains			IEC/EN 61000-4-5			
UL LPG			80-EM-S0031			
Арр			plied Level	Performance Criteria		
Application Point (kV)		(kV)	Required Surge Waveform			
Input a.c. Power Ports 0.5, 1 (Line to Line) 0.5, 1, 2		0.5, 1 (Line to Line) 0.5, 1, 2	Combination Wave (1.2µS x 50µS Voltage, 8µS x 20µS Current) B Combination Wave			
(Line to Earth) (1.2µS x 50µS Voltage, 8µS x 20µS Current)						
Supplementa	ry inforn	nation: None				

Table 21 Surge Immunity EUT Configuration Settings

Power Interface Mode	EUT Configurations Mode	EUT Operation Mode
1 & 2	1	1
Supplementary information: None		

Table 22 Surge Immunity Test Equipment

Test Equipment Used					
Description	Manufacturer	Model	Identifier		
Surge – GP3					
Main Generator	Teseq	NSG 3040	62386		
Surge Module	Teseq	CWM 3450	62385		
Measurement Software	Teseq	Win 3000 Version 1.1.0	64369		
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	43735		
Multimeter	Fluke	87V	64386		

Tek Stop			Tek Stop	· · · · · [†] · · · · · · · · · · · · · · · · · · ·	Δ: 1.44 γ
					@: 1.96\ ∆: 47.8µ @: 47.8µ
		Ch1 Max			
		4.10 V			
		Ch1 Rise 707.3ns			▶ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
		←			•
	MI DOUS A Chi C	580mV			580mV
	1 21.40 %	7 Nov 2012 09:21:06		1 21.40 %	7 Nov 20 09:24:16
4000\/	Amplitude and From	at Timo	4000)	/ Time to Half \/a	
-0000) Don Circuit Voltage			en Circuit Voltag	

Job Number:

Model Number:

1001540401

M87X series

Figure 18 Test setup for Surge Immunity

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

Table 5A Results for Surges – Mains (a.c or d.c)

Mode of Application - Mains	Level	Polarity	Results AC	Results Aux Power		
		Positive	1	1		
Line 1 to Line 2 (Differential	0.567	Negative	1	1		
mode	4.01.1/	Positive	1	1		
	1.0KV	Negative	1	1		
		Positive	1	1		
	0.5KV	Negative	1	1		
Line 1 to Earth (Common	1.041/	Positive	1	1		
mode)	1.0KV	Negative	1	1 1 1		
	2.041/	Positive	1	1		
	2.0KV	Negative	1	1		
		Positive	1	1		
	0.5KV	Negative	1	1		
Line 2 to Earth (Common	1.041/	Positive	1	1		
mode)	1.0KV	Negative	1	1		
	2.0kV	Positive	1	1		
	2.0KV	Negative	1	1		

Results Descriptions:

 X – Not Performed nor required.

 1 – Compliant – No observed response from EUT.

 2- Not Applicable-Aux power does not have a PE

Table 5B Results for Surges – Mains (Signal and Telecommunications Ports)

Mode of Application - Mains	Level	Polarity	Results RS232 shield	Results Ethernet CM pins 1,2,3, & 6	Results H12 shield	Results VT	Results CT	Results Digital I/O DC
Line 1 to Earth	0.5, 1,	Positive	1	1	1	1	1	1
(Common mode)	2kV	Negative	1	1	1	1	1	1
Line 2 to Earth	051	Positive	1	1	1	1	1	1
(Common mode)	0.5, 1, 2kV	Negative	1	1	1	1	1	1
Line 1 to Line 2	0.5, 1	Positive	Х	Х	Х	1	1	Х
(differential mode)	0.5, 1	Negative	Х	Х	Х	1	1	Х

Table 5C Results for Surges – Mains (Signal and Telecommunications Ports with Protection)

Mode of Application - Mains	Level	Polarity	Results	
Line 1 to Forth (Common mode)	41417	Positive	X	
Line I to Earth (Common mode)	4K V	Negative	X	
Line 2 to Earth (Common mode)	4617	Positive	X	
Line 2 to Earth (Common mode)	4K V	Negative	Х	
Supplementary information: None				

Results Descriptions:

X - Not Performed nor required.

1 – Compliant - No observed response from EUT.

5.6 Test Conditions and Results – CONDUCTED IMMUNITY

Test Description	Measurements were made on a ground plane that extends 0.5-meter minimum beyond all sides of the system under test. The EUT was located 10cm above the reference ground plane and any associated I/O cables attached to the EUT were located between 30mm and 50mm above the ground plane. The indicated field was pre-calibrated prior to placement of the system under test.						
Basic Standard IEC/EN 61000-4-6					N 61000-4-6		
UL LPG				87-EM-S0032			
Applied Level						Performance Criteria	
Frequency (MHz)	(Vrms)	N	Iodulation	Dwell Time		
0.150 – 80N	ИНz	10	80%	6 AM (1kHz)	2.8 sec	A	
Supplementary information: None							

Table 24 Conducted Immunity EUT Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #			
1, 2 & 3	1	1			
Supplementary information: None					

Table 25: Conducted Immunity Test Equipment

Test Equipment Used						
Description	Manufacturer	Model	Identifier			
Conducted Immunity – GP3	•	·	·			
Signal Generator	Hewlett Packard	8648B	000768			
Power Meter	Rohde & Schwarz	NRVD	ME5A-681			
Power Meter Sensor	Rohde & Schwarz	NRV-Z51	ME5B-134			
Power Meter Sensor	Rohde & Schwarz	NRV-Z51	ME5A-715			
RF Amplifier	IFI	M75	ME7A-669			
	Fischer Custom					
CDN	Communication	801-M3-16	ME5A-223			
Receive Probe	FCC	F-33-4	ME5B-153			
EM Clamp	AR	S/N 27719	3167			
Directional Coupler	Werlatone	C5086-10	38881			
Spectrum Analyzer	Advantest	R3261C	ME5A-229			
Software	UL	V9.30	44737			
Temp/Humidity/Pressure						
Meter	Cole Parmer	99760-00	43735			
Multimeter	Fluke	87V	64386			

Figure 19 Test Setup for Conducted Immunity – Mains

Figure 20 Test Setup for Conducted Immunity – I/O Lines

Table 26 Results for Continuous Conducted Disturbances -

Point of application	Results
Mains AC	1
AC (Aux Power)	1
DC Digital Input/Output	1
I/O Lines – Terminal	1
I/O Lines – Ethernet	1
I/O Lines – Serial	1
I/O Lines –VT Voltage cables	1
I/O Lines –CT Current cables	1

Artificial Hand Used

Results Descriptions:

X - Not Performed nor required.

1 - Compliant - No observed response from EUT.

5.7 Test Conditions and Results – POWER-FREQUENCY MAGNETIC FIELDS

Test Description	Meas sides grour under the in	urements were made on a ground plane th of the system under test. Tabletop EUTs of plane and the indicated field was pre-ca r test. Floor-standing EUTs are located 10 dicated field was pre-calibrated prior to pla	at extends 1-meter minimum beyond all are located 80cm above the reference librated prior to placement of the system cm above the reference ground plane and cement of the system under test.		
Basic Standa	rd		IEC/EN 61000-4-8		
UL LPG			87-EM-W0028		
			Application Point		
Fully configur frequency or f	ed sar freque	nple tested at the stated power line ncies.	Enclosure		
		Test Level	Performance Criteria		
Frequency (Hz) A/m					
50 and 60 30			A		
Supplementary information: None					

Table 27 Power Frequency Magnetic Fields EUT Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #	
1	1	1	
Supplementary information: None			

Table 28 Power Frequency Magnetic Fields Test Equipment

Test Equipment Used					
Description	Manufacturer	Model	Identifier		
Magnetic Loop Antenna	UL	MLA	ME7A-455		
Variac	Power Stat	116BT	ME7-501		
AC Power Source	Pacific Power	360-AMX	ME7A-626		
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	43734		
Multimeter	Fluke	87V	64386		

Job Number: 10015 Model Number: M87X Client Name: BITR

1001540401 M87X series BITRONICS

Figure 21 Test Setup for Power Frequency Fields

Table 29 Description of Product Performance

Point of application	Results @ 50Hz	Results @ 60Hz
X-Axis	1	1
Y-Axis	1	1
Z-Axis	1	1

Results Descriptions:

X - Not performed nor required.

1 - Compliant - No observed response from EUT.

5.8 Test Conditions and Results – VOLTAGE DIPS AND INTERRUPTIONS

Test Descriptio	The produ product co interrupts	The product was subjected to voltage dips and interruptions. Testing was performed with the product connected directly to a generator capable of simulating the voltage drops and interrupts as described							
Basic Sta	ndard			IEC	C/EN 61000-4-11				
UL LPG					87-EM-S0029				
				Me	easurement Point				
Fully conf indicated	igured subjected below.	d to the levels		Input a.c. Power Ports					
		Appli	ied Levels			Performance Criteria			
%Ut	%Reduction	Duration (s)	Period (Cycles)		Sync Angle				
			50Hz	60Hz	(Degrees)				
0	100%	0.02	1 -		0	С			
40%	60%	0.2	10 12		0	С			
70%	30%	0.5	25	30	0	С			
0%	100%	5	250 300 0			С			
Supplementary information: 0 degrees is the crossover point of the voltage waveform.									

Table 30 VDS EUT Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #	
1	1	1	
Supplementary information: None			

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

Table 31 VDS Test Equipment

Test Equipment Used					
Description	Manufacturer	Manufacturer Model			
VDS Generator	Haefley	PLINE 1610	ME5A-118		
Oscilloscope	Agilent	545610B	ME5A-850		
Measurement Software	Haefley	Version 1.41	44745		
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	43734		
Multimeter	Fluke	87V	64386		

Figure 22 T Voltage Dips and Interruptions Waveform Verifications

60% Dip (40% Amplitude Remaining)

30% Dip (70% Amplitude Remaining)

100% Interruption (0% Amplitude Remaining)

Job Number: 10 Model Number: M Client Name: B

1001540401 M87X series BITRONICS

Figure 23 Test Setup for Voltage Dips and Interruptions

Job Number:	1001540401
Model Number:	M87X series
Client Name:	BITRONICS

Table 32 Results for Voltage Dips and Interruptions -

Voltage Dips and Short Interruptions @ 50Hz							
Point of application	%Ut	%Reduction	Duration (s)	Period (Cycles)	Results		
Mains	70%	30%	0.5	25	1		
Mains	40%	60%	0.2	10	1		
Mains	0%	100%	0.02	1	1		
Mains	0%	100%	5	250	1a		

Voltage Dips and Short Interruptions @ 60Hz								
Point of application	%Ut	%Reduction	Duration (s)	Period (Cycles)	Results			
Mains	40%	60%	0.2	12	1			
Mains	70%	30%	0.5	30	1			
Mains	0%	100%	5	300	1a			

Results Descriptions:

X - Not Performed.

1 – Compliant - No observed response from EUT.

1a-Lost communication at COM2 and Ethernet. Unit needed reboot to recover compliant with criteria.
Job Number: 1001540401 Model Number: M87X series Client Name: BITRONICS

Appendix A

Accreditations and Authorizations

NVLAP Lab code: 100255-0

NVLAP: The National Institute of Standards and Technology (NIST) administers the National Voluntary Laboratory Accreditation Program (NVLAP). NVLAP is comprised of laboratory accreditation programs (LAPs) which are established on the basis of requests and demonstrated need. Each LAP includes specific calibration and/or test standards and related methods and protocols assembled to satisfy the unique needs for accreditation in a field of testing or calibration. NVLAP accredits public and private laboratories based on evaluation of their technical qualifications and competence to carry out specific calibrations or tests. Accreditation criteria are established in accordance with the U.S. Code of Federal Regulations (CFR, Title 15, Part 285), NVLAP Procedures and General Requirements, and encompass the requirements of ISO/IEC 17025. For a full scope listing see http://ts.nist.gov/ts/htdocs/210/214/scopes/1002550.htm

FCC: Details of the measurement facilities used for these tests have been filed with the Federal Communications Commission's Laboratory in Columbia, Maryland (Ref. No. 91040).

Industry Canada Industrie Canada

Industry of Canada: Accredited by Industry Canada for performance of radiated measurements. Our test site complies with RSP 100, Issue 7, Section 3.3. File #: IC 2181

VCCI: Accepted as an Associate Member to the VCCI. The measurement facilities detailed in this test report have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. Registration Nos.: (Radiated Emissions) R-797, (Conducted Emissions) C-832, C-83400, and C-81879 and (Conducted Emissions - Telecommunications Ports) T-1582 and T-1583.

File Number: E164178

Job Number: 100 Model Number: M8 Client Name: BIT

1001540401 M87X series BITRONICS

ICASA: ICASA (Independent Communications Authority of South Africa) has appointed UL as a Designated Test Laboratory to test Telecommunications equipment for type approval in compliance with CISPR 22 to assist in fulfilling its mandate under section 54(1) of the Telecommunications Act, 1996 (Act 103 of 1996).

NIST/CAB: Validated by the European Commission as a U.S. Conformity Assessment Body (CAB) of the U.S.-EU Mutual Recognition Agreement (MRA) for the Electromagnetic Compatibility - Council Directive 2004/108/EC, Annex III (2-3). Also validated for the Telecommunication Equipment-Council Directive 99/5/EC, Annex III and IV, Identification Number: 0983.

NIST/CAB: Provisioned to act as a U.S. Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the Asia Pacific Economic Cooperation (APEC) MRA between the American Institute in Taiwan (AIT) and the United States. Our laboratory is considered qualified to test equipment subject to the applicable EMC regulations of the Chinese Taipei Bureau of Standards, Metrology and Inspection (BSMI) which require testing to CNS 13438 (CISPR 22).

NIST/CAB: Recognized by the Infocomm Development Authority of Singapore (IDA) under the Asia Pacific Economic Cooperation Mutual Recognition Agreement (APEC MRA). Our laboratory is provisionally designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC MRA. Our scope of designation includes IDA TS EMC (CISPR 22), IEC 61000-4-2, -4-3, -4-4, -4-5, and -4-6

Compliance Certificate

Company Name and Location: BITRONICS 261 BRODHEAD RD BETHLEHEM, PA 18017

File Number: MC16183

Date of Report: 2012-12-27

Product Description: Measurement Transducer and Event Monitor (IED)

Investigated in accordance with EN61000-6-4:A1:2010 (2011) EN61000-6-2(2005), EN61326-1(2006) EN60255-25: (2001), EN60255-26 (2009).

Model Designation: M87x with new H12 Host module

Serial Number: 895101

Job Number: 1001540401

Project Number: 12ME06094

A sample of the product described above has been investigated by Underwriters Laboratories Inc. in accordance with the requirements indicated above and has been found in compliance with those requirements as shown in the Test Report Ref. No. 1001540401which forms part of this Certificate. It is the responsibility of the company shown above that the products it produces are in compliance with the applicable requirements.

The name of Underwriters Laboratories (UL), any abbreviation thereof, or any symbol shall not be used on or in connection with the product unless and until specifically authorized by UL.

Tested by:

Reviewed by:

Any information and documentation involving UL Mark services are provided on behalf of Underwriters Laboratories (UL) or any authorized licensee of UL.